
ORDERBOOK

orderbook
David Kane, Andrew Liu and Khanh Nguyen

Introduction

The orderbook package provides facilities for ex-
ploring and visualizing the orderbook data of finan-
cial instruments (stocks, bonds, options, et cetera).
An order book keeps track of the outstanding limit
orders for a stock. A limit order is an order to buy or
sell a security at a specified limit price, or better. Con-
sider a simple order book containing five limit or-
ders: sell 150 shares of IBM at $11.11, sell 150 shares
of IBM at $11.08, buy 100 shares of IBM at $11.05,
buy 200 shares of IBM at $11.05, and buy 200 shares
of IBM at $11.01.

The order book would then be:

Price Ask Size

$11.11 150

$11.08 100

300 $11.05

200 $11.01

Bid Size Price

where orders on the bid (ask) side represent orders
to buy (sell), and size is the number of shares offered
at each price level. The inside market is composed of
the best bid (highest bid price) and best ask (lowest ask
price) at $11.05 and $11.08, respectively. The spread
($0.05) is the difference between the best bid and best
ask and the midpoint ($11.065) is the average of the
best bid and best ask. In addition to price and size,
all orders in the order book have a unique identifier
and a timestamp representing the time at which they
were submitted.

There are four types of messages that market par-
ticipants can submit to an exchange: add, cancel, can-
cel/replace, and market orders. Participants can either
add a passive limit order or add a limit order that sets
the market. In the former a new buy (sell) order is
added with a price lower (higher) than the current
best bid (ask), while in the latter the buy (sell) or-
der has a price that is higher (lower) than the current
best bid (ask). Orders can also be cancelled and re-
moved from the order book. If a participants want
to update the size of their order, they can issue a can-
cel/replace, which cancels an order, then immediately
replaces it with another order at the same price, but
with a lower size. In both cases orders are identified
by ID.

Note that cancel/replace orders can lower the
size of an order, but not increase it. This is because
cancel/replace orders maintain the time priority of an
order. In the case of two or more orders at the same
price level, the order accepted first has priority in the

event of a market order. A market order is an order
to immediately buy or sell stock at the best available
prices. In the above example, suppose that the or-
der to buy 100 shares at $11.05 was submitted before
the order to buy 200 shares at $11.05. The first order
has priority, so if a market order to buy 200 shares
is submitted, the first order to buy 100 shares will be
completely filled, and the second order to buy 200
shares will only be partially filled.

Now suppose that the market order was to sell
400 shares. Then the first price level would be filled,
and 100 shares from the next price level would be
filled:

Price Ask Size

$11.11 150

$11.08 100

100 $11.01

Bid Size Price

There are more nuances in order book microstruc-
ture than there is space here to discuss them. Inter-
ested readers should refer to Johnson (200) for de-
tailed background.

Examples

NVIDIA is a graphics processing unit and chipset de-
veloper with ticker symbol NVDA. Consider the or-
der book for NVDA at a leading electronic exchange
on June 8, 2010. We create the orderbook object by
giving the object the location of our data file. Initially
it has 0 orders, so we read in the first 10,000 and then
show the object.

> library(orderbook)

> file <- system.file("data", "sample.txt",

+ package = "orderbook")

> ob <- orderbook(file = file)

> ob <- read.orders(ob, 10000)

> ob

An object of class orderbook

Current orderbook time: 09:35:02

Message Index: 10,000

Bid Orders: 631

Ask Orders: 1,856

Total Orders: 2,487

The orderbook time is displayed in 24-hour time,
so it is currently 9:35:02 AM. The message index in-
dicates which row in the data file the order book has
read through. The display also shows that there are
631 bids and 1,856 asks outstanding, for a total of
2,487 orders. This indicates that many have either
been cancelled or removed through trades.

1

ORDERBOOK

> summary(ob)

Current time is 09:35:02

Ask price levels: 540

Bid price levels: 179

Total price levels: 719

Ask orders: 1,856

Bid orders: 631

Total orders: 2,487

Spread: 0.02

Mid point: 11.370

Inside market

Best Bid: 11.36

Size: 2,700

Best Ask: 11.38

Size: 400

Using summary the total order information from
above is repeated. Additionally, we see that there
are 540 ask and 179 bid price levels, for a total of
719. This indicates that many orders are have been
submitted at the same price level. The spread is
$0.02, and the midpoint is $11.370. The inside mar-
ket is composed of 2,700 shares offered at the best
bid of $11.36 and 400 shares offered at the best ask
of $11.38. This is important because almost all trades
occur within the inside market.

> display(ob)

Current time is 09:35:02

Price Ask Size

11.42 900

11.41 1,400

11.40 1,205

11.39 1,600

11.38 400

2,700 11.36

1,100 11.35

1,100 11.34

1,600 11.33

700 11.32

Bid Size Price

display shows the inside market, along with the
four next best bid and ask price levels, along with the
size at each price level. This gives the user a simple
snapshot of the supply and demand in the market.

> plot(ob)

Order Book − 09:35:02

Size (Shares)
P

ric
e

10.20

10.40

10.60

10.80

11.00

11.20

11.36

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

BID

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

11.38

11.60

11.80

12.00

12.20

12.40

12.60
ASK

plot shows a graphical representation of the or-
der book with price levels on the y-axis, and size on
the x-axis. The maximum and minimum price lev-
els are 10% above and below the midpoint. Note the
large order at $11.01. It is helpful to know whether
the depth at that price level is comprised of a single
order, or several. Using the [operator we can view
the order information at particular price levels.

> nrow(ob["11.00"])

[1] 56

> ob["11.01"]

price size type time id

1 11 109 BID 34220988 4403084

2 11 50000 BID 34220988 4403085

3 11 100 BID 34220988 4403086

This retrieves the orders at the price levels spec-
ified. We see that even though there are 56 orders
at $11.00 and only 3 at $11.01, there is an order for
50,000 shares at the latter price level that accounts for
almost all of the size.

We can view a plot of the orders at each price level
by specifying type = ’o’ when using plot. In the
previous plot the maximum and minimum price lev-
els were 10% off from the midpoint, but for this plot
we specify a bound of only 3.3% above and below
the midpoint.

2

ORDERBOOK

> plot(ob, bounds = 0.033, type = "o")

Order Book − 09:35:02

Number of Orders

P
ric

e

11.00

11.10

11.20

11.30

11.36

102030405060

BID

0 10 20 30 40 50 60

11.38

11.50

11.60

11.70

ASK

Viewing the orderbook with bids on one side and
asks on another is useful, but users may want to view
them side by side to more directly compare the sup-
ply and demand at each price level.

> plot(ob, type = "s")

Order Book

Size (Shares)

B
id

 P
ric

e
Le

ve
ls

11.27

11.28

11.29

11.30

11.31

11.32

11.33

11.34

11.35

11.36

0 5000 10000 15000 20000

11.47

11.46

11.45

11.44

11.43

11.42

11.41

11.40

11.39

11.38

ASK
BID

A
sk

 P
ric

e
Le

ve
ls

The user can also view a simple animation of the
order book between two times. A frame of the ani-
mation is displayed below.

Note that the raw text of the last order book mes-
sage is displayed at the bottom if individual mes-
sages are being read (discussed further below). The
black lines separate orders, with the orders nearest
the middle y-axis having the highest time priority.
The loadanimation method will show price levels at
least five pennies above and below the best ask and
best bid, as well as the pennies in between for each
second between 9:30:00 and 9:31:00. To ensure that

the axes do not change the method first creates all or-
der books between the start and stop time and finds
the maximum size, as well as the maximum and min-
imum price levels to be plotted. These values are
used to set the y- and x-axis. Then Trellis objects are
created for each order book and stored in a file. The
location of the file is stored in a slot in the orderbook
object.

> ob <- loadanimation(ob, "9:30:00", "9:31:00")

If the users want to “slow down” the order book
near the end time, they can add a slow parameter
that has the animation generate order books for each
individual message, instead of each second. The fol-
lowing will create order books for each second be-
tween the start time and the time 50 messages before
9:31:00, then it will create orderbooks for each mes-
sage from that point until 9:31:00.

> ob <- loadanimation(ob, "9:30:00", "9:31:00",

+ slow = 50)

animate is a simple loop that prints the objects.
pause specifies the number of seconds to wait in be-
tween printing the next Trellis object.

> animate(ob, pause = 0.25)

> plotTrade(ob)

Trades

Size (Shares)

P
ric

e
Le

ve
ls

11.35

11.36

11.37

11.38

11.39

11.40

11.41

11.42

11.43

11.44

11.45

11.46

11.48

11.49

11.54

0 10000 20000 30000 40000 50000 60000 70000

Finally, users can plot the trade data by using
plot.trade. This creates a simple bar graph of the
number of shares traded at each price level.

Aside from the ability to retrieve summary statis-
tics and create graphics, orderbook can create dif-
ferent orderbook objects for viewing the order book
at different times. For example, the user may want
to view the order book when the market opens at
9:30:00.

> ob <- read.time(ob, "9:30:00")

3

ORDERBOOK

Suppose the user wants to view the last pre-
market trade. previous.trade finds the first trade
that occurred before the current order book time,
and then returns an orderbook object at that time.
next.trade finds the next trade that occured after
the current order book time, and then returns an
orderbook object at that time.

> ob <- previous.trade(ob)

> ob

An object of class orderbook

Current orderbook time: 09:34:59

Message Index: 9,958

Bid Orders: 622

Ask Orders: 1,856

Total Orders: 2,478

read.orders is used to move forwards or back-
wards in the order book by a specified number of
messages. The following will change the state of
the orderbook to 50 messages previous to the current
message.

> ob <- read.orders(ob, n = -50)

> ob

An object of class orderbook

Current orderbook time: 09:34:55

Message Index: 9,908

Bid Orders: 616

Ask Orders: 1,860

Total Orders: 2,476

Data

Most brokers and exchanges have their own format
for transmitting raw order data to customers, so it
would be unfeasible for us to write scripts to auto-
matically process that data. Consequently, raw data
for an orderbook object must be in the following
form:

type,time,id,price,size,type

A,31285893,1231884,11.49,200,ASK

R,31295779,1231884,150

T,31295779,1231884,11.49,50

C,31295781,1231884

where A, R, T, C mean Add, Replace, Trade, and
Cancel, respectively. The first column is the times-
tamp of the message in milliseconds after midnight
of the users timezone, and the second column is the
ID of the order. For a cancel/replace the next number
is the new size, while for Add and Trade price comes
before size, followed by the type of order in the case
of Add (BID/ASK).

In this example an order to sell 200 shares at
$11.49 is added to the orderbook, followed by a can-
cel/replace and a trade several seconds later. Note

that the cancel/replace and the trade have the same
timestamp and ID. This is because the orderbook

needs to be told the new share size after the trade oc-
curs, as well as information on the trade. It will not
adjust the size of a previous order after a trade occurs
without an accompanying cancel/replace present.
We see that a few milliseconds after the trade the or-
der is entirely cancelled.

Simulation

orderbook supports adding, replacing, and can-
celling orders. To add an order, the user needs to
specify the price, size, and type. Time and ID are
optional, and will default to the maximum time and
the maximum ID + 1, respectively. For replacing an
order, only ID and size need to be given, and for
cancelling an order, only ID is necessary. Market or-
ders are also possible by specifying the size and side
(BUY/SELL).

> display(ob)

> ob <- add.order(ob, stuff)

> ob <- remove.order(ob, stuff)

> ob <- replace.order(ob, stuff)

> ob <- market.order(ob, 200, "BUY")

> display(ob)

Using these tools, the user can write functions to
simulate the movement of an order book. In the fol-
lowing example, we consulted Gilles (2006). We sim-
ulate 1,000 orders. In each iteration of our simulation
there is a 50% chance for a cancel order to be placed,
20% chance for a market order, and 30% chance for
a limit order. Orders are cancelled completely ran-
domly, and for a market order there is a 50-50 chance
for a buy or sell order to be placed. The size of the
market order always corresponds to the size of the
best ask or bid at the front of the queue. When a limit
order is placed, there is a 50-50 chance for it to be an
ask or bid. Then there is a 35% chance for the price to
be within the spread, in which case a price is chosen
based on a uniform distribution. If the price is deter-
mined to be outside of the spread, a price is chosen
using a power law distribution. The size follows a
log-normal distribution.

> ob <- simulate(ob)

4

BIBLIOGRAPHY BIBLIOGRAPHY

> plot(ob)

Order Book − 09:39:52

Size (Shares)

P
ric

e

10.20

10.40

10.60

10.80

11.00

11.20

11.40

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

BID

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

11.47

11.60

11.80

12.00

12.20

12.40

12.60

ASK

Conclusion

The current release of the orderbook package is
meant to serve as a proof-of-concept. Relatively so-
phisticated order book analytics are possible using

an open source package. The orderbook package is
part of a collection of packages for performing tests
of financial conjectures. See Campbell et al. (2007)
and Kane and Enos (2006) for more information on
the backtest and portfolio packages, respectively.

David Kane, Andrew Liu and Khanh Nguyen
Kane Capital Management
Cambridge, MA, USA
dave@kanecap.com, Andrew.T.Liu@williams.edu,
and knguyen@cs.umb.edu

Bibliography

K. Campbell, J. Enos, D. Gerlanc, and D. Kane. Back-
tests. 2007.

D. Gilles. Asynchronous Simulations of a Limit Order
Book. PhD thesis, University of Manchester, 2006.

B. Johnson. Algorithmic Trading & DMA: An intro-
duction to direct access trading strategies. 4Myeloma
Press, 200.

D. Kane and J. Enos. Analysing equity portfo-
lios in r. R News, 6(2):13–19, May 2006. URL
http://CRAN.R-project.org/doc/Rnews.

5

mailto:dave@kanecap.com
mailto:Andrew.T.Liu@williams.edu
mailto:knguyen@cs.umb.edu
http://CRAN.R-project.org/doc/Rnews

	orderbook

